(q5-C5H5)Ru(PPh3)H3: A Stable Ruthenium@) Trihydride

Stephen G. Davies," Steven D. Moon, and Stephen J. Simpson

The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, U.K.

Reduction of $(\eta^5 - C_5H_5)$ Ru(PPh₃)₂Cl (2) with LiAIH₄ in tetrahydrofuran leads to the trihydride $(\eta^5\text{-C}_5H_5)$ Ru(PPh₃)H₃ (1) together with, as a minor product, the expected monohydride $(\eta^5$ -C₅H₅)Ru(PPh₃)₂H **(3)** which can be prepared efficiently by treatment of the chloride **(2)** with NaOMe; reduction of $(\eta^5$ -C₅H₅)Ru(Ph₂PCH₂CH₂PPh₂)Cl (4) with LiAlH₄ gives only the monohydride (η^5 -C₅H₅)Ru- $(Ph_2PCH_2CH_2PPh_2)H (5)$.

Hydridoruthenium(1v) species have been frequently proposed as intermediates in catalytic reactions such as olefin isomerisation¹ and intramolecular H-D exchange.² Neutral compounds such as $RuH_4(PAr_3)$, $Ar = Ph$, $p-MeC_6H_4$, *etc.*) are unstable with respect to dihydrogen loss and might best be considered as ruthenium(n) co-ordinated to a neutral dihydrogen donor ligand.³ Cationic compounds such as $[RuH_3(L_2)_2]^+PF_6^ {L_2 = (PMe₂Ph)₂, Ph₂P[CH₂]₂PPh₂, Ph₂P[CH₂]₃PPh₂}^4$ and $[(\eta^6 - C_6\text{Me}_6)\text{RuH}_3(\text{PR}_3)]^+$ PF₆⁻ (R = Me, Ph)⁵ have been prepared and are moderately stable. We now report the preparation of the thermally stable ruthenium(IV) trihydride (η^5 -C₅H₅)- $Ru(PPh₃)H₃(1).$

Treatment of $(\eta^5-C_5H_5)Ru(PPh_3)_2Cl$ (2) with LiAlH₄ in diethyl ether has been reported to yield $(\eta^5$ -C₅H₅)Ru(PPh₃)₂H **(3)** ;, however in our hands poor yields of hydride-containing materials were obtained. Treatment of **(2)** with LiAlH, in tetrahydrofuran (THF) gave on work-up a mixture of the trihydride $(\eta^5$ -C₅H₅)Ru(PPh₃)H₃ (1) and the monohydride **(3)**

(2) THF $LiAlH₄(D₄)$ \circledcirc וס א $(D)H$ **RU** ומזו $\{(\mathsf{D})\}$

in the ratio **4** : 1. These could be easily separated by crystallisation from diethyl ether. The yellow crystalline minor component was identified as the monohydride **(3)** by comparison with an authentic sample (see below). The major product, which was only moderately soluble in diethyl ether, crystallised as white needles. Characterisation by elemental analysis, mass spectroscopy *[m/z* **432** *(M+)* 1, 31P n.m.r. spectroscopy $[(C_6D_6)$ δ 73.1 p.p.m.], and ¹H n.m.r. spectroscopy $[(C_6D_6)$ δ 7.8-7.0 (m, Ph), 4.8 (s, C₅H₅), -9.8 (d, *J* 18 Hz, RuH)] led to its formulation as $(\eta^5 - C_5H_5)Ru(PPh_3)H_3$ (1). The offresonance decoupled 31P n.m.r. spectrum of **(1)** was a broad quartet, confirming the presence of three metal hydride ligands.

The use of $LiAlD₄$ in THF followed by $D₂O$ work-up gave the corresponding trideuteride $(\eta^5$ -C₅H₅)Ru(PPh₃)D₃. The ²H n.m.r. spectrum of the trideuteride showed no deuterium incorporation into the triphenylphosphine or cyclopentadienyl ligands.
The trihydride **(1)** would be expected to adopt either the

trigonal bipyramidal **(la)** or the square based pyramidal **(lb)** structure. The C_{3v} structure (1a) should exhibit two i.r. active stretching modes $(A_1 + E)$ while the C_s structure (1b) should exhibit three i.r. active modes $(2A' + A'')$. The i.r. spectrum of **(1)** consists of two absorptions attributable to v(Ru-H) at 2040 and 1995 cm⁻¹. In the ¹H n.m.r. spectrum, the three hydride ligands in **(la)** are equivalent while for **(lb),** assuming slow exchange, two are *cis* and one is *trans* to triphenylphosphine. The signal for the Ru-H ligands in the 'H

Scheme 1

n.m.r. spectrum of **(1)** is a sharp doublet *(J* 18 Hz) with a coupling constant characteristic of the presence of a *cis* phosphine ligand.⁷ The spectrum of **(1)** is unchanged from -80 to 70 °C, in contrast to that of the recently prepared $(\eta^5 C_5Me_5)Os(CO)H_3$ which exhibits a separate triplet and doublet in the ratio $(1:2)$ for the metal hydride ligands at -50 °C but a broad singlet at 25 °C.⁸

The closely related tribromide (η^5 -C₅Me₄Et)Ru(CO)Br₃ has been crystallographically characterised and possesses the *C,* structure, though disordered, in the solid state.⁹ Presumably $(\eta^5-C_5Me_5)Os(CO)H_3$ also has this structure. The i.r. and ¹H n.m.r. spectroscopic evidence is consistent with structure **(la)** which is presumably favoured in this case by the steric requirements of the bulky triphenylphosphine ligand.

The monohydride **(3)** does not convert into the trihydride **(1)** in THF or benzene solution and transforms very slowly in warm THF (60 *"C)* containing LiAlH,. Treatment of **(2)** with LiAlD₄ followed by H₂O gave (1) containing *ca*. 30% hydrogen at the metal centre. We note that **(3)** does not react with $Ph_2P[CH_2]_2PPh_2$ in toluene at reflux in contrast to the chloride (2),1° *i.e.* phosphine dissociation is much faster from the chloride **(2)** than from the hydride **(3).** It is unlikely therefore that **(3)** is a precursor to **(1)** and we propose the mechanism shown in Scheme **1** for the conversion of **(2)** to **(1).**

$$
(\eta^{5}\text{-}C_{5}H_{5})Ru(Ph_{2}PCH_{2}CH_{2}PPh_{2})X
$$

(4) X = Cl
(5) X = H

In contrast to the reaction of **(2)** and consistent with the mechanism in Scheme 1, the reaction of $(\eta^5-C_5H_5)Ru(Ph_2PCH_2-$ CH₂PPh₂)Cl(4) with LiAlH₄ in THF leads cleanly to $(\eta^5$ -C₅H₅)-Ru(Ph2PCH2CH2PPh,)H *(5)* characterised by elemental analysis, mass $[m/z 566 (M^+)]$, ³¹P n.m.r. $[(C_6D_6)\delta 91.0 \text{ p.p.m.}]$ and ¹H n.m.r. spectroscopy $[(C_6D_6) \ \delta \ 7.3 \ (m, Ph), 4.8 \ (s, C_5H_5), 2.0 \ (m, CH_2), -12.9 \ (t, J \ 34 \ Hz, RuH)].$ Phosphine loss from the bidentate system is disfavoured and so a pathway leading to a ruthenium(rv) trihydride cannot be followed in this case.

While the new trihydride **(1)** is thermally stable in solution to *ca.* 100 "C and indefinitely stable under nitrogen in the solid state, solutions of **(1)** rapidly turn green in daylight.

It is possible to convert the chloride **(2)** cleanly into the monohydride **(3),** with sodium methoxide in methanol (78 % yield). The monohydride (3) was characterised by ¹H n.m.r. $[(C_6D_6)\delta -11.1$ (t, *J* 34 Hz, RuH)] and ³¹P n.m.r. spectroscopy $[(C_6D_6)$ δ 67.5 p.p.m.]. The reaction to yield (3) presumably proceeds by β -elimination from an initially formed methoxy complex.¹¹

We thank the British Petroleum Company Limited for *a* Fellowship **(S.** J. **S.)** and Johnson Matthey Chemicals Limited for a generous loan of ruthenium.

Received, 15th August 1983; Corn. 1114

References

- 1 D. F. Ewing, B. Hudson, D. E. Webster, and P. B. Wells, *J. Chem. SOC., Dalton Trans.,* 1972, 1287.
- 2 T. Ito, **S.** Kitazume, **A.** Yamamoto, and **S.** Ikeda, *J. Am. Chem. SOC.,* 1970, 92, 3011.
- 3 W. H. Knoth, *J. Am. Chem. SOC.,* 1972,94, 104; R. 0. Harris, N. K. Hota, L. Sadavoy, and J. M. C. Yuen, *J. Organomet. Chem.,* 1973, 54, 259.
- 4 **T.** V. Ashworth and E. Singleton, *J. Chem. SOC., Chem. Commun.,* 1976, 705.
- *5* H. Werner and H. Kletzin, *J. Organomet. Chem.,* 1983, 243, c59.
- 6 T. Blackmore, **M. 1.** Bruce, and F. G. **A.** Stone, *J. Chem. SOC. A,* 1971, 2376.
- $7 \frac{\text{p}}{\text{p}}$ is typically 14-25 Hz for *cis* phosphine ruthenium hydrides and 120-260 **Hz** for *trans* phosphine ruthenium hydrides; see for example, **J.** B. Letts, T. J. Mazanek, and D. W. Meek, *J. Am. Chem. SOC.,* 1982, 104, 3898.
- 8 J. K. Hoyano and W. **A.** G. Graham, J. *Am. Chem. SOC.,* 1982, **104,** 3722.
- 9 **1.** W. Nowell, K. Tabatabaian, and C. White, *J. Chem. SOC., Chem. Commun.,* 1979, 547.
- 10 **P.** M. Treichel and D. **A.** Komar, *Synth. React. Inorg. Mefal-Org. Chem.,* 1980, **10,** 205.
- 11 D. J. Cole-Hamilton and G. Wilkinson, *J. Chem. SOC., Dalton Trans.,* 1977, 797.