$(\eta^{5}-C_{5}H_{5})Ru(PPh_{3})H_{3}$: A Stable Ruthenium(IV) Trihydride

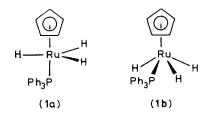
Stephen G. Davies,* Steven D. Moon, and Stephen J. Simpson

The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, U.K.

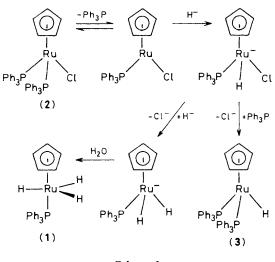
Reduction of $(\eta^{5}-C_{5}H_{5})Ru(PPh_{3})_{2}CI$ (2) with LiAlH₄ in tetrahydrofuran leads to the trihydride $(\eta^{5}-C_{5}H_{5})Ru(PPh_{3})H_{3}$ (1) together with, as a minor product, the expected monohydride $(\eta^{5}-C_{5}H_{5})Ru(PPh_{3})_{2}H$ (3) which can be prepared efficiently by treatment of the chloride (2) with NaOMe; reduction of $(\eta^{5}-C_{5}H_{5})Ru(Ph_{2}PCH_{2}CH_{2}PPh_{2})CI$ (4) with LiAlH₄ gives only the monohydride $(\eta^{5}-C_{5}H_{5})Ru-(Ph_{2}PCH_{2}CH_{2}PPh_{2})H$ (5).

Hydridoruthenium(IV) species have been frequently proposed as intermediates in catalytic reactions such as olefin isomerisation¹ and intramolecular H–D exchange.² Neutral compounds such as RuH₄(PAr₃)₃ (Ar = Ph, *p*-MeC₆H₄, *etc.*) are unstable with respect to dihydrogen loss and might best be considered as ruthenium(II) co-ordinated to a neutral dihydrogen donor ligand.³ Cationic compounds such as [RuH₃(L₂)₂]⁺PF₆⁻ {L₂ = (PMe₂Ph)₂, Ph₂P[CH₂]₂PPh₂, Ph₂P[CH₂]₃PPh₂)⁴ and [(η^{6} -C₆Me₆)RuH₃(PR₃)]⁺PF₆⁻ (R = Me, Ph)⁵ have been prepared and are moderately stable. We now report the preparation of the thermally stable ruthenium(IV) trihydride (η^{5} -C₅H₅)-Ru(PPh₃)H₃ (1).

Treatment of $(\eta^5-C_5H_5)Ru(PPh_3)_2Cl$ (2) with LiAlH₄ in diethyl ether has been reported to yield $(\eta^5-C_5H_5)Ru(PPh_3)_2H$ (3);⁶ however in our hands poor yields of hydride-containing materials were obtained. Treatment of (2) with LiAlH₄ in tetrahydrofuran (THF) gave on work-up a mixture of the trihydride $(\eta^5-C_5H_5)Ru(PPh_3)H_3$ (1) and the monohydride (3)


 $Ph_{3}P_{h_{3}P} Cl$ (2) $THF \downarrow LiALH_{4}(D_{4})$ (2) Ru + (D)H - Ru + H(D) $Ph_{3}P + H(D) + Ph_{3}P$

(1)


in the ratio 4:1. These could be easily separated by crystallisation from diethyl ether. The yellow crystalline minor component was identified as the monohydride (3) by comparison with an authentic sample (see below). The major product, which was only moderately soluble in diethyl ether, crystallised as white needles. Characterisation by elemental analysis, mass spectroscopy $[m/z \ 432 \ (M^+)]$, ³¹P n.m.r. spectroscopy $[(C_6D_6) \ \delta \ 73.1 \text{ p.p.m.}]$, and ¹H n.m.r. spectroscopy $[(C_6D_6) \ \delta \ 7.8-7.0 \ (m, Ph), 4.8 \ (s, C_5H_5), -9.8 \ (d, J \ 18 \ Hz, RuH)] \ led$ $to its formulation as <math>(\eta^5-C_5H_5)Ru(PPh_3)H_3$ (1). The offresonance decoupled ³¹P n.m.r. spectrum of (1) was a broad quartet, confirming the presence of three metal hydride ligands.

The use of LiAlD₄ in THF followed by D₂O work-up gave the corresponding trideuteride $(\eta^5-C_5H_5)Ru(PPh_3)D_3$. The ²H n.m.r. spectrum of the trideuteride showed no deuterium incorporation into the triphenylphosphine or cyclopentadienyl ligands.

The trihydride (1) would be expected to adopt either the trigonal bipyramidal (1a) or the square based pyramidal (1b) structure. The C_{3v} structure (1a) should exhibit two i.r. active stretching modes $(A_1 + E)$ while the C_s structure (1b) should exhibit three i.r. active modes (2A' + A''). The i.r. spectrum of (1) consists of two absorptions attributable to v(Ru-H) at 2040 and 1995 cm⁻¹. In the ¹H n.m.r. spectrum, the three hydride ligands in (1a) are equivalent while for (1b), assuming slow exchange, two are *cis* and one is *trans* to triphenylphosphine. The signal for the Ru-H ligands in the ¹H

Scheme 1

n.m.r. spectrum of (1) is a sharp doublet (J 18 Hz) with a coupling constant characteristic of the presence of a *cis* phosphine ligand.⁷ The spectrum of (1) is unchanged from -80 to 70 °C, in contrast to that of the recently prepared (η^5 -C₅Me₃)Os(CO)H₃ which exhibits a separate triplet and doublet in the ratio (1:2) for the metal hydride ligands at -50 °C but a broad singlet at 25 °C.⁸

The closely related tribromide $(\eta^5-C_5Me_4Et)Ru(CO)Br_3$ has been crystallographically characterised and possesses the C_s structure, though disordered, in the solid state.⁹ Presumably $(\eta^5-C_5Me_5)Os(CO)H_3$ also has this structure. The i.r. and ¹H n.m.r. spectroscopic evidence is consistent with structure (1a) which is presumably favoured in this case by the steric requirements of the bulky triphenylphosphine ligand.

The monohydride (3) does not convert into the trihydride (1) in THF or benzene solution and transforms very slowly in warm THF (60 °C) containing LiAlH₄. Treatment of (2) with LiAlD₄ followed by H₂O gave (1) containing *ca.* 30% hydrogen at the metal centre. We note that (3) does not react with Ph₂P[CH₂]₂PPh₂ in toluene at reflux in contrast to the chloride (2),¹⁰ *i.e.* phosphine dissociation is much faster from the chloride (2) than from the hydride (3). It is unlikely therefore that (3) is a precursor to (1) and we propose the mechanism shown in Scheme 1 for the conversion of (2) to (1).

$$\begin{array}{l} (\eta^{\text{5-}}C_{\text{5}}H_{\text{5}})\text{Ru}(\text{Ph}_{2}\text{PCH}_{2}\text{CH}_{2}\text{PPh}_{2})X\\ \textbf{(4)}\ X\ =\ \text{Cl}\\ \textbf{(5)}\ X\ =\ \text{H} \end{array}$$

In contrast to the reaction of (2) and consistent with the mechanism in Scheme 1, the reaction of $(\eta^5-C_5H_5)Ru(Ph_2PCH_2-CH_2PPh_2)Cl(4)$ with LiAlH₄ in THF leads cleanly to $(\eta^5-C_5H_5)-Ru(Ph_2PCH_2CH_2PPh_2)H$ (5) characterised by elemental analysis, mass $[m/z 566 (M^+)]$, ³¹P n.m.r. $[(C_6D_6)\delta 91.0 \text{ p.p.m.}]$ and ¹H n.m.r. spectroscopy $[(C_6D_6)\delta 7.3 \text{ (m, Ph)}, 4.8 \text{ (s, } C_5H_5), 2.0 \text{ (m, CH}_2), -12.9 \text{ (t, } J 34 \text{ Hz, RuH)}]$. Phosphine loss from the bidentate system is disfavoured and so a pathway leading to a ruthenium(IV) trihydride cannot be followed in this case.

While the new trihydride (1) is thermally stable in solution to ca. 100 °C and indefinitely stable under nitrogen in the solid state, solutions of (1) rapidly turn green in daylight.

It is possible to convert the chloride (2) cleanly into the monohydride (3), with sodium methoxide in methanol (78% yield). The monohydride (3) was characterised by ¹H n.m.r. [(C_6D_6) δ –11.1 (t, J 34 Hz, RuH)] and ³¹P n.m.r. spectroscopy [(C_6D_6) δ 67.5 p.p.m.]. The reaction to yield (3) presumably proceeds by β -elimination from an initially formed methoxy complex.¹¹

We thank the British Petroleum Company Limited for a Fellowship (S. J. S.) and Johnson Matthey Chemicals Limited for a generous loan of ruthenium.

Received, 15th August 1983; Com. 1114

References

- 1 D. F. Ewing, B. Hudson, D. E. Webster, and P. B. Wells, J. Chem. Soc., Dalton Trans., 1972, 1287.
- 2 T. Ito, S. Kitazume, A. Yamamoto, and S. Ikeda, J. Am. Chem. Soc., 1970, 92, 3011.
- 3 W. H. Knoth, J. Am. Chem. Soc., 1972, 94, 104; R. O. Harris, N. K. Hota, L. Sadavoy, and J. M. C. Yuen, J. Organomet. Chem., 1973, 54, 259.
- 4 T. V. Ashworth and E. Singleton, J. Chem. Soc., Chem. Commun., 1976, 705.
- 5 H. Werner and H. Kletzin, J. Organomet. Chem., 1983, 243, C59.
- 6 T. Blackmore, M. I. Bruce, and F. G. A. Stone, J. Chem. Soc. A, 1971, 2376.
- 7 ²J_{PH} is typically 14—25 Hz for *cis* phosphine ruthenium hydrides and 120—260 Hz for *trans* phosphine ruthenium hydrides; see for example, J. B. Letts, T. J. Mazanek, and D. W. Meek, *J. Am. Chem. Soc.*, 1982, **104**, 3898.
- 8 J. K. Hoyano and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 3722.
- 9 I. W. Nowell, K. Tabatabaian, and C. White, J. Chem. Soc., Chem. Commun., 1979, 547.
- 10 P. M. Treichel and D. A. Komar, Synth. React. Inorg. Metal-Org. Chem., 1980, 10, 205.
- 11 D. J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1977, 797.